
Encapsulation as a First Principle of Object-Oriented Design

by Scott L. Bain
Senior Consultant
Net Objectives

Introduction: First Principles ... 1
Un-Encapsulated Code: The Evil of the Global Variable 2
Encapsulation of Member Identity... 3
Self-Encapsulating Members.. 5
Preventing Changes .. 6
The difficulty of Encapsulating Reference Objects 6
Breaking Encapsulation with Get().. 9
Encapsulation of Type .. 11
Encapsulation of Design .. 12
Encapsulation on all Levels .. 14
Conclusions... 14

Introduction: First Principles

Object Orientation (OO) addresses as it's primary concern those things which
influence the rate of success for the developer or team of developers: how easy is it
to understand and implement a design, how extensible (and understandable) an
existing code set is, how much pain one has to go through to find and fix a bug, add
a new feature, change an existing feature, and so forth. Beyond simple "buzzword
compliance", most end users and stakeholders are not concerned with whether or
not a system is designed in an OO language or using good OO techniques. They are
concerned with the end result of the process – it is the development team that
enjoys the direct benefits that come from using OO.

This should not surprise us, since OO is rooted in those best-practice principles that
arose from the wise dons of procedural programming. The three pillars of "good
code", namely strong cohesion, loose coupling, and the elimination of redundancies,
were not discovered by the inventors of OO, but were rather inherited by them (no
pun intended).

But presaging even fundamental principles like these is the "First Principle"
underlying the OO paradigm. A First Principle is that which implies (or leads one to)
other principles.

If one can discover the First Principle that underlies a given set of principles, and
fully understand all its implication, then entire hierarchies of wisdom can be retained
in one cognitive place. It's a bit like a fractal seed that explodes into a complex and
beautiful pattern through the simple amplification of its nature.

An example of this from the non-technical world is "The Golden Rule". Parents
discover that it is often difficult to teach their children all the detailed rules of good
citizenship, but if one can get a child to embrace and practice this First Principle –

treat others as you would like to be treated – then most of the legal and moral
standards we are held to will follow in due course. Most legal systems are based on
The Golden Rule.

One way to understand OO well (beyond the superficial syntactic understanding that
is often mistaken for real understanding) is to discover and explore the First
Principles that inform OO at every level.

The First Principle we are concerned with here is:

What you hide you can change.

OO theorists use the term "encapsulation" to represent this principle, and while
every OO analyst, designer, and developer believes (s)he knows what encapsulation
means, we often fail to investigate it fully enough to empower it as a First Principle.
There is much more to Encapsulation than simply making data members private
("data hiding"), and yet this is often how it is understood.

The purpose of this article is to investigate encapsulation more fully, to determine its
value as a First Principle, and to discover the ways it which it implies, or leads to
other OO principles and concepts. Along the way we'll find that a rigorous
understanding of encapsulation, in and of itself, can be the key to grasping the
wisdom of OO in general, and that concepts like polymorphism, abstracting concepts,
and designing to interfaces are actually all implied by the search for comprehensive
encapsulation.

Un-Encapsulated Code: The Evil of the Global Variable

Here is the lowest degree of encapsulation possible in a pure-OO language like Java
or C#:

public class Foo {
 public static int x;
}

Any class in the system can access x, either to use its value in a calculation or other
process (and thus become dependant upon it), or to alter its value (and thus cause a
side effect in those classes that depend on it). Foo.x might as well be thought of
Global.x (and in fact there are many developers who have done just this), and in
one fell swoop the efforts of the Java and C# creators to prevent global variables is
thwarted.

Global variables are evil because they create tight coupling. They are rather like a
doorknob that everyone in the household touches and, thus, during the cold and flu
season becomes the vector for sharing germs.

If any class in the system can depend on Foo.x, and if any other class can change it,
then in theory every class is potentially coupled to every other class, and unless your
memory is perfect you're likely to forget some of these links when maintaining the
code. The errors that creep in over time will often be devilishly difficult to find. We'd
like to prevent things that carry such obvious potential for pain.

What most OO developers would naturally think of as the lowest degree of
encapsulation is this:

public class Foo{
 public int x;
}

But the fact that x in this case is an instance variable is, in fact, a kind of
encapsulation. Now, for any class in the system to depend on x, it must have a
reference to an instance of Foo, and for two classes to be coupled to each other
through x, they must both have a reference to the same instance of Foo. There are
a number of techniques to prevent this from happening, so whereas a public static
variable cannot be encapsulated, here we have at least a chance of preventing
unintended side-effects. There are weakly-typed languages like Python and Ruby
that posit this level of encapsulation to be enough in and of itself.

Also note that Foo is a public class. Another encapsulating action would be to remove
the 'public' keyword, which would mean that only classes in the same package (Java)
or assembly (C#) would be able to access Foo in any way at all.

Encapsulation of Member Identity

While putting x into an instance does create some degree of encapsulation, it fails to
create an encapsulation of identity.

Identity is the principle of existence. Identity coupling is usually thought in terms of
class A 'knowing' that class B exists (usually by having a member of its type, taking
a parameter of its type, or returning its type from a method), but instance variables
have identity too. Put another way:

public class Foo {
 public int x;
}

public class Bar {
 private Foo myFoo = new Foo();
 public int process(){
 int intialValue = myFoo.x;
 return initialValue * 4;
 }
}

Ignoring the fact that this particular implementation of Bar's process() method
would consistently produce a zero, note that Bar is not only coupled to the value of x
in the instance pointed to by myFoo, but it is also coupled to the fact that x is an
integer (or, at minimum, a type that can be implicitly cast to one), and the fact that
it is an instance member of the Foo class. It is coupled to x's nature.

If a future revision of Foo requires that x be stored as, for instance, a String, or
that it be obtained from a database or remote connection dynamically at runtime, or

that it be calculated from other values whenever it is asked for, then Bar's method of
accessing it will have to change – Bar will have to change because Foo changed (and
so will every other class that accesses x in a Foo instance). This is unnecessary
coupling.

To encapsulate the identity of x requires that we create a method or methods that
encapsulate x's nature:

public class Foo {
 private int x;
 public int getX() {
 return x;
 }
 public void setX(int anInt){
 x = anInt;
 }
}

public class Bar {
 private Foo mFoo = new Foo();
 public int process(){
 int intialValue = myFoo.getX();
 return initialValue * 4;
 }
}

The new way of accessing Foo's x in Bar (highlighted in bold) now creates an
encapsulation of x's identity, or nature. Bar is coupled only to the fact that getX() in
Foo takes no parameters and returns an integer, not that x is actually stored as a
integer, nor that it's actually stored in Foo, nor that it's stored anywhere at all (it
could be a random number). Now the developers are free to change Foo without
effecting Bar, nor any other class that calls getX(), so long as they don't change the
method signature:

public class Foo {
 public String x = "0"; // x no longer an int
 public int getX() {
 return Integer.parseInt(x); // convert when needed
 }
 public void setX(int anInt){
 x = new Integer(anInt).toString(); // convert back
 }
}

public class Bar {
 private Foo mFoo = new Foo();
 public int process(){
 int intialValue = myFoo.getX(); // none the wiser
 return initialValue * 4;
 }
}

Here x is now stored as a String (though this is just one of any number of changes
that could be made to the way x is maintained in Foo), but Bar need not be touched
at all.

Why?

What you hide you can change. The fact that x was an integer in Foo was hidden, so
it could be changed. Envisioning this over and over again throughout a system leads
to the conclusion that the power to make changes, extensions, and to fix bugs is
made much easier when one encapsulates as much and as often possible.

Self-Encapsulating Members

While many developers might find it quite natural to encapsulate a data member
behind a set of accessor methods (another word for get() and set() methods), the
standard practice for accessing a data member from within the class itself is
generally to refer to it directly:

public class Foo{
 private int x;
 public int getX(){
 return x;
 }
 public void setX(int anInt){
 x = anInt;
 }
 public boolean isPrime(){
 boolean rval = true;
 for(int i=2; i<(x/2); i++){
 if(Math.mod(i, x) == 0) rval = false;
 }
 return rval;
 }
}

Here, isPrime() calculates a true/false condition on x, which is local to Foo(), and
so even though x is private, it can be accessed directly in the method.

However, consider the earlier scenario where Foo was changed to the effect that x is
no longer stored as an int, or is no longer stored as a local data member at all
(perhaps it's stored in a database, or serialized to the disk, or obtained from some
other class, or calculated from other values). Now isPrime(), and any other local
method that directly refers to x, will have to be re-written to account for the new
situation. In fact, the new code in local methods that converts whatever-x-has-
become into the integer it used to be will likely be highly redundant. And we know
we don't want redundancy.

However, for the most part it's a matter of convenience – but if the possibility of x
changing in this way seems likely (what Bruce Eckel calls "the anticipated vector of
change") , then using getX() even within Foo's own methods would reduce the
maintenance headaches considerably when the change is made.

One has to weigh the syntactic inconvenience of writing 'getX()' instead of 'x' in
these algorithms against the need to make extensive changes when and if the nature
of x needs to change. Generally, it's found to be worth the extra typing.

Preventing Changes

Another advantage of the accessor methods shown above is the ability to make a
member of a class 'read only'. If we simply remove the setX() method in Foo above,
then the value is readable, but not changeable. This eliminates the potential that Foo
may serve to couple two other classes, since while one class may depend of the
return value of getX(), no other class may change this value. Alternately, we could
eliminate the getX() method, but leave the setX(), meaning that another other
class could change the state of a Foo instance, but none could depend on it.

C# has instituted an alternative way of accomplishing this, called a property:

// C#
public class Foo {
 private int myX;
 public int x {
 get { return myX; }
 set { myX = value; } // 'value' is an implicit variable
 }
}

This is a bit of syntactic sugar that allows the programmer to embed the gets and
sets as part of the data-member definition. Bar, however, would still access it as it
would any public variable:

// C#
public class Bar {
 private Foo mFoo = new Foo();
 public int process(){
 int intialValue = myFoo.x; // actually calls the get
 return initialValue * 4;
 }
}

The theory here is that x could have begun its life as a public member, and then
later could be changed to a property without changing Bar. In Foo, one could
eliminate the set{} code as before to make the property read-only (or the get{} to
make it write-only), or could write them to fetch/send/calculate x, and thus gain
similar beneficial encapsulation as was possible with the getX() and setX()
methods.

There are arguments to be made for and against this. We'll not engage them here,
but the good news is that, in C#, you can use either technique easily. Note that self-
encapsulating a data-member is a simpler issue in C#, because the syntax for
referencing the member locally would not have to be changed when the member
became a property.

The difficulty of Encapsulating Reference Objects

One common practice in OO is the use of constructors to guarantee the proper
creation of compositional objects. Consider this code:

public Foo{
 private int x;
 Foo (int anInt){ // Constructor requires an int be passed in
 x = anInt; // ensuring proper instantiation of Foo.
 }
 public int getX() {
 return x;
 }
 public void setX(int newInt) {
 x = newInt;
 }
}

public Bar{
 private Foo myFoo;
 public Bar(Foo aFoo){// Constructor requires an instance of Foo
 myFoo = aFoo;// be passed in, ensuring the proper
 } // instantiation of Bar.
 public int process(){
 int intialValue = myFoo.getX();
 return initialValue * 4;
 }
}

public class Client{
 public static void main(String[] args){
 int x = 5; // Make needed int for Foo instance
 Foo f = new Foo(x); // Made Foo instance using x
 Bar b = new Bar(f); // Make Bar instance using f
 int i = b.process();// Use Bar instance
 }
}

Here Client creates an instance of Foo (initializing the value of x by passing an int
into the constructor), and then hands this instance to the Bar constructor, which the
instance of Bar will now hold as a private member.

Is myFoo in Bar encapsulated? It's private. It has no set() method to allow changes
to it (it does not even have a get() method). Isn't the concept of a private member
with no accesors the very definition of member encapsulation? The assumption most
developers would make is that myFoo is fully encapsulated, and this could be a
disastrous assumption.

Consider this version of the Client class:

public class Client{
 public static void main(String[] args){
 int x = 5;
 Foo f = new Foo(x);
 Bar b = new Bar(f);
 int i = b.process();
 f.setX(10); // Still holding the Foo reference!
 i = b.process();
 }
}

b.process() will produce an entirely different value in the second call, because
Client still holds a reference to f (the instance of Foo it created to hand over to

Bar's constructor), and thus can still change its state. Martin Fowler calls this effect
'aliasing'. Since Bar's behavior depends upon the state of this Foo reference, Client
can break the encapsulation if it retains this Foo reference for its own purposes, and
Bar cannot prevent it from doing so. If Client passes this Foo reference to another
class, then it too will be able to break the encapsulation of myFoo in Bar.

This is because myFoo is a reference to an object on the heap. When Client calls new
Bar(f), f is indeed passed by copy, but it's a copy of a reference and it therefore
points to the same instance that the original did, and so the copying neither hides
nor protects it from future manipulation.

Contrast this to the call to new Foo(x). Since x is a value, not a reference, the
copying of x completely removes any possibility that Client can change it by
changing the original. In this code fragment:

 int x = 5;
 Foo f = new Foo(x);
 x = 10;

...the code 'x = 10' will have no effect on the state of f, because the integer it
holds is a different integer than the one Client has. It's a copy.

So, this problem of altering-after-the-fact is unique to references (at least in Java),
and can be tricky to deal with. One way of solving the problem is by having Bar
make a defensive copy of the Foo reference it takes in its constructor, assuring that
it holds a different reference of Foo (with the same state) than any other object
holds. This requires that Foo be cloneable, or that it expose its state so that Bar can
make another Foo with the same state. Let's examine two versions of Bar's
constructor that could ensure good encapsulation of its myFoo member:

public Bar(Foo aFoo){
 myFoo = new Foo(aFoo.getX());
}

This will work as the code is written because aFoo allows Bar, an outside class, to
access its x member, and so Bar can make a new, private, separate Foo for its own
use. Now Client can manipulate the original Foo it all it wants, and will not effect
Bar.

If Foo did not allow this access (if it had no getX() method), then Foo could be
made cloneable:

public class Foo{
 private int x;
 public Foo(int anInt){
 x = anInt;
 }
 public Foo clone(){
 return new Foo(x);

 }

}

...and so Bar's constructor could make its defensive copy this way:

public Bar(Foo aFoo){
 myFoo = aFoo.clone();
}

Either way, Bar's myFoo reference will point to a different object on the heap than
any other class in the system, and thus myFoo is once again completely encapsulated.

Breaking Encapsulation with Get()

Making members private and then providing get() methods but no set() methods is
often thought to be strong encapsulation.

We've seen above how this is not the case with reference objects. However, if we
take the step of making a defensive copy of any reference held by a particular class,
then can we still say that set() methods break encapsulation but get() methods do
not? A set() allows an outside class to make a change, but a get() does not, right?

Not with references. Consider:

public Bar{
 private Foo myFoo;
 public Bar(Foo aFoo){
 myFoo = aFoo.clone(); // Make a private instance
 }
 public Foo getFoo(){
 return myFoo;
 }
 public int process(){
 int intialValue = myFoo.getX();
 return initialValue * 4;
 }
}

public class Client{
 public static void main(String[] args){
 int x = 5;
 Foo f = new Foo(x);
 Bar b = new Bar(f); // Bar will make a defensive copy
 int i = b.process(); // Use Bar instance
 Foo fFromBar = b.getFoo();// Client gets Bars new Foo.
 fFromBar.setX(10); // ...and changes it
 i = b.process(); // effecting Bar again.
 }
}

Here Client makes a Foo, and Bar clones it to defend against subsequent
manipulation by Client. However, Client is able to get Bar's newly-made, private
Foo reference by calling the getFoo() method provided, and so encapsulation is
broken again. The only way around this is to have Bar clone myFoo again, and then
return this object from its getFoo() method:

public Bar{
 private Foo myFoo;
 public Bar(Foo aFoo){
 myFoo = aFoo.clone(); // Make a private instance
 }
 public Foo getFoo(){
 return myFoo.clone(); // Return a clone, not the member
 }
 public int process(){
 int intialValue = myFoo.getX();
 return initialValue * 4;
 }
}

If a setFoo() method is provided, it would have to work like the constructor does, to
ensure the encapsulation is maintained.

So, the game is completely different when dealing with value objects (which are
themselves passed by copy) and reference objects (which are references passed by
copy).

Encapsulation of Value and Reference Types
Activity Value Object Encap? Reference Object Encap?

State passed into constructor Yes No, unless a defensive copy is made.

Get() method provided Yes No, unless a defensive copy is returned.

Set() method provided No No, unless a defensive copy is made.

C# makes this issue both simpler and more complex.

For instance, while the only value objects in Java are the primitives (int, float,
boolean, and the like), in C# it is possible to create value objects with both complex
state and functional members (methods), called structs. Structs work very much like
classes do (you can instantiate them, they can implement interfaces), but they are
passed by making complete copies of the object, not by copying a reference to an
instance, and so these particular encapsulation issues can be largely alleviated.

However, C# also makes value objects passable by reference, using ref and out
keywords in method signatures, and so it's possible to break encapsulation on any
member, value or reference, if they are used. Therefore, ref and out should be
used very carefully.

A pragmatic point: with all these issues, the main danger comes when one breaks
encapsulation unknowingly. There are many approaches to design that might take
advantage of the fact that a reference passed into a constructor could subsequently
be used to change state on a contained object, or that a value object in C# could be
externalized through a ref or an out parameter. If this is intentional, and well-
documented, then the danger is minimal.

However, these subtle issues can easily escape notice, and create situations where
members seem to be well-encapsulated, and yet are not. Understanding how and
why this happens is the best defense.

Encapsulation of Type

Encapsulation is often thought of as data-hiding. There are even references that
define it as precisely that. However, encapsulation is a broader notion – as we've
already seen, it's meaningful to think of encapsulating the identity of a data member,
not just the value that it holds.

Taken further, it's possible to think of the hiding of entire types as encapsulation as
well. For example:

public abstract class Calculator{
 public abstract int calc(int x, int y);
}

public class Adder extends Calculator{
 public int calc(int x, int y) {
 return x + y;
 }
}

public class Multiplier extends Calculator{
 public int calc(int x, int y){
 return x * y;
 }
}

Here, Adder and Multiplier extend the abstract base class Calculator. Because of
this, any instance of Adder or Multiplier can be held by a reference of Calculator
type (this is called an implicit cast), and the class that holds the reference need not
"know" what is "really" being held. For instance:

public class CalcUser{
 private Calculator myCalculator;
 public CalcUser(Calculator aCalculator){
 myCalculator = aCalculator;
 }
 public void process(){
 int i1 = 4;
 int i2 = 5;
 int r = myCalculator.calc(i1, i2);
 }
}

Note that CalcUser contains no mention whatsoever of Adder or Multiplier, yet
Calculator itself is abstract (cannot be instantiated), so whatever instance is
passed into the constructor will have to be either an instance of Adder or an instance
of Multiplier (these are the only classes that can be cast to Calculator, so the
type-checking in the compiler will only allow these instances to be passed in).
Since they share a common interface, CalcUser can use either Adder or Multiplier
instances in exactly the same way (this is an example of Polymorphism) without any
knowledge of which subclass it has, or even what subclasses are possible, or even
that Calculator is abstract in the first place.

This is the encapsulation of type. Calculator, an abstract base class (although this
is equally true if an interface is used) encapsulates its subclasses if other classes
hold their references to them as an upcast to the base type. Many/most of the
popular design patterns make use of this fact, and it is just what the "Gang of Four"
had in mind when they made the recommendation that good designers should
"design to interfaces".

It's a tad more complicated in C# because, unlike Java, methods in C# are not
automatically virtual (late-bound). What this means is that a method called on a
subclass reference that was cast back to the superclass type may revert to the
superclass method unless the override keyword is used in the subclass method:

public abstract class Calculator{
 public abstract int calc(int x, int y); // abstract methods are
 } // inherently virtual
}

public class Adder : Calculator{
 public override int calc(int x, int y) {
 return x + y;
}

public class Multiplier : Calculator{
 public override int calc(int x, int y){
 return x * y;
 }
}

Note that calc() is abstract in Calculator, and so it is inherently/automatically
virtual. Sometimes base classes provide default implementations of methods, and if
these are present they must be declared virtual, or they may not be overridden like
this:

public abstract class Calculator{
 public virtual int calc(int x, int y){ //default implemetation
 return System.Math.Max(x, y); //must be 'virtual'
 } //to be overridden
}

Encapsulation of Design

In the previous example, the Calculator abstraction made it possible to hide the
specific kinds of calculator subclasses that exist from other parts of the application.
The virtue of this is maintainability and flexibility – we can add new types of
calculators to the system without changing the client objects that use them.

However, whereas we can hide the specific classes Adder and Multiplier from most of
the rest of the system, certainly we cannot hide them entirely. Something,
somewhere, will have to contain the code new Adder() and new Multiplier(), in
order for these classes to be instantiated. And, something will have to make the
decision as to which one to build under a given circumstance. If the client objects
that use these classes are given this responsibility, then we must break the
encapsulation of type, and we lose the modularity that seemed so attractive.

The obvious answer is to use another object to build the Calculator subclasses.
Such an object is usually called an "object factory":

public class CalculatorFactory {
 public Calculator getCalculator() {
 if(someDecision()) {
 return new Adder();
 } else {
 return new Multiplier();
 }
 }
}

If all other objects that require a Calculator implementation use this factory to get
it, then we've got one single place to maintain when a new class, say Subtractor,
comes into being.

In Design Patterns Explained, Elements of Reusable Object-Oriented Software, the
authors1 illustrate the encapsulation of type in many of their patterns, such as the
Strategy Pattern:

public class Client {
 public static void main(String[] args) {
 Context c = new context();
 Strategy s = StrategyFactory.getStrategy();
 c.takeAction(s);
 }
}

public class Context {
 public void takeAction(Strategy myStrategy) {
 // Whatever else
 myStrategy.varyingAction();
 // Whatever else
 }
}

pubic abstract class Strategy {
 public abstract void varyingAction;
}

StrategyFactory (not shown) clearly makes an implementing subclass (also not
shown) of Strategy, and provides this to Client. Client then hands this to the
Context object to use. Context is "unaware" of which actual Strategy
implementation it has, and so is Client, since it obtained it from the
StrategyFactory blindly.

But there is still an opportunity for encapsulation here that we're not taking
advantage of. The Strategy implementations are hidden from everything except
StrategyFactory, but Client does have "awareness" of the fact that the Context
object requires a Strategy implementation to be "handed in" in order to function
properly. What is not encapsulated, therefore, is the Strategy Pattern itself, the

1 Gamma, Helms, Johnson, and Vlissides

design we're using to handle the variation. If at some point in the future we decide
to change this design, to one where no such delegation takes place, or where the
delegation is accomplished in some other way, then we'll have to change the way
Client interacts with Context. The design is not encapsulated.

Sometimes this is necessary. If, for instance, we need a high degree of dynamism in
the way Context operates (perhaps every time it is used we need to be able to give
it a different Strategy implementation) then this implementation of the pattern
would be appropriate. Where it is not necessary, however, it's better to hide the
design.

How? The most common technique it to either:

a) Have the Context object request the Strategy implementation from
StrategyFactory, instead of having Client do so. Thereby, Client can
simply call the method on Context without handing anything in.

b) Have a factory build the Context object in the first place, and while doing
so hand in the proper Strategy object via its constructor.

…or both. Let a factory establish the initial Strategy to use, but let the Context
object (or the Client) change this when/as needed.

Either way, the Client object would now have no coupling to the fact that the
Strategy Pattern was in use, which would make it much easier to change this design
when/if the issues involved became more complex, and this design was no longer
adequate.

Encapsulation on all Levels

We should strive to encapsulate everything that can be encapsulated, because it
simplifies maintenance every time we do so. Also, it is always easy to break
encapsulation after the fact, and extremely difficult to encapsulate something later
on. When something is encapsulated, and a need arises that requires the hidden
thing to be revealed, we simply provide access. When something was not
encapsulated, and now needs to be hidden, then every part of the application that
has become coupled to it must be re-worked.

To achieve maximum encapsulation, one must:

1. Encapsulate by policy, reveal by need. When in doubt, hide it, then reveal it
when this becomes necessary.

2. Broaden your view of what can be hidden. Using an object factory, for
instance, encapsulates the construction issue, and can even encapsulate an
entire design, if all the players in the solution are build by the factory. We
don't normally think of this as "encapsulation", but it is, and brings the same
value that other types of encapsulation bring: ease of change later on.

Conclusions

Much of the power of OO comes from the circumspect use of its features. Extensible
and maintainable designs are more likely when one takes optimal advantage of
delegation, abstraction, polymorphism, and when one hides everything one can.
Encapsulation, properly understood, is a First Principle that can lead us in the right
direction if we constantly ask ourselves:

• Should I hide this?

• Is this really hidden?

• What entities is this hidden from?

• How could encapsulation be broken here?

• When should encapsulation be broken here?

• What prepares this best for possible future changes?

The point of all of this is to make development easier, less frustrating, more
sustainable, more economically viable, and ultimately more successful.

-Scott Bain-
April 2004

